SYLLABUS

Basic data of the subject				
Faculty:	Faculty of Engineering and Informatics			
Title of the subject:	Mathematics 2			
Level:	Bachelor			
Course Status:	Core			
Year of studies:	1			
Number of hours per week:	4			
Value of Credits - ECTS:	6			
Time / location:				
Course lecturer:	Prof. As. Dr. Valdete Loku			
Contact details:	valdete.loku@ushaf.net			
Course Description	Mathematics II includes concepts of one-variable functions, limits, numerical strings, derivatives, and integrals.			
Objectives of the course:	The aim of this course is to provide students with the basic concepts of mathematics, especially mathematical analysis of one-variable function, numerical string, string limit and function. Then, familiarity with the concept of derivative and integral of the function and their application in engineering.			
Expected learning outcomes:	After successful completion of the course, students will be able to: - know the basic concepts from mathematical analysis. - solves mathematical problems of functions, numerical strings, limits, derivatives, integrals, series, differential equations, etc. - develop various engineering models through mathematical models - apply mathematical models to solving engineering problems.			
Contribution to the student load (which must correspond with learning outcomes)				
Activity		Hour	Day/Week	In total
Lectures		4	15	60
Internship				
Contacts with teacher / consultations		1	1	1
Field exercises				
Midterm, seminars and projects.				
Homework				
Self-learning time student (at the library or at home)		4	15	60
Final preparation for the exam		6	3	27
Time spent on evaluation (tests, quiz and final exam)		2		2
Projects and presentations				

Designed learning plan	Lectures and exercises to be held
Week:	Basic concepts of the function of one variable, properties and some classes
Week one:	Elementary functions, such as exponentially function, logarithmic functions, trigonometric functions etc.
Week two:	Numerical sequences and their properties
Week three:	Limit of sequences and their properties, convergent sequences
Week four:	Limit of functions and their properties.
Week five:	Continuity of functions and their properties.
Week six:	Differential of functions and their properties, such as derivative of the sum, difference, product, ration etc.
Week seven:	Derivative of the compound functions and their application.
Week eight:	Basic theorems od derivatives, such as Role Theorem, Lagrange theorem, etc and their applications.
Week nine:	Application of the derivatives in study of the functions and their graphs
Week ten:	The concept of the indefinite integral and basic methods of integration
Week eleven:	Integration of some classes of functions, such as rational, irrational , trigonometric etc.
Week twelve:	Concept of the definite integral, and their properties
Week thirteen:	Application of the definite integral in practice
Week fourteen:	Function with several variables
Week fifteen:	

Academic policies and rules of conduct

Regular attendance of lectures and exercises is necessary, as well as active participation with discussion and solution of tasks. Not impeding the progress required for learning using mobile phones turned off or in silent mode.

