<u>Syllabus</u>

Basic data of the subject			
University/ Faculty:	University of Applied Sciences in Ferizaj/		
· · ·	Faculty of Engineering and Informatics		
Title of the subject:	Thermodynamics		
Level:	Bachelor		
Course Status:	Elective		
Year of studies:	III		
Number of hours per week:	4		
Value of Credits - ECTS:	5		
Time / location:			
Course lecturer:	Dr.Sc. Abdyl Koleci Prof.SHL		
Contact details:	abdyl_koleci@hotmail.com		
Course description	General knowledge of technical thermodynamics.		
-	The body of the work. Thermodynamic parameters		
	of the situation and the situation changes.		
	Polytrophic processes and polytopes special cases.		
	The first law of thermodynamics. Enthalpy and		
	internal energy. The second law of		
	thermodynamics. Entropy, irreversibility and		
	reversibility. Thermodynamic analysis of processes		
	and cycles. Real gases and water vapour. The		
	engine cycles. Transmission of heat by conduction.		
	Transmission of heat by convection. Transmission		
	of heat by radiation-thermal radiation. The		
	transmission of heat in general form		
Objectives of the course:	The purpose of this course is to study the various		
	forms of energy, the relationship between matter		
	and energy possession rule of law and fundamental		
	thermodynamics and their application in different		
	processes. Knowledge of thermodynamics forms the		
	basis for a large number of disciplines applied to		
	thermogenic.		
Expected learning outcomes:	<i>After completing this course the student will be able</i>		
Espected rear ming outcomes.	to:		
	10.		
	• Understand the basic concepts in technical		
	thermodynamics		
	• Submit design engineering problems		
	associated with technical thermodynamics		
	Be able to solve problems related		
	- De ubie io soire problems related		

	engineering technical thermodynamics			
Contribution to the student load (which must correspond with learning outcomes)				
Activity	Hour	Day/Week	Total	
Lectures	2	15	30	
Theoretical exercises / laboratory				
Internship	2	15	30	
Contacts with teacher / consultations	2	3.5	7	
Field exercises	1	4	4	
Midterm, seminars and projects.	2	2	4	
Homework	2	2	4	
Self-learning time (at the library or at home)	2	15	30	
Final preparation for the exam	1	14	14	
Time spent on evaluation (tests, quiz and final exam)				
Projects and presentations	2	1	2	
Total			125	
	T			
Teaching methodology: Assessment methods:	Lectures, discussions, seminars, lab exercises, etc.			
Assessment memous.	• First assessment: 25%			
	• Second assessment: 30%			
		ework: 10%		
		dance: 5%		
	• Final Total 100%	exam: 30%		
Literature	10101 100%			
Basic literature:	1. Demneri,	I. etj(2003): Teri	nodinamika. UPT,	
	Tiranë	• • /	<i>,</i>	
	2. Krasniqi,	F,Muriqi,A.(199.	5): Përmbledhje	
	detyrash	nga termodinami	ika, FIM, Prishtinë,	
Additional literature:	1. Cengel, Y., Boles, M. (2002): Thermodynamisc an enginnering approach, McGrow HIll, NY			

	2. Moran,M,Shapiro,H.(2000),Fundamentals of Engineering Thermodyamics I&II,(ushtrime), John Wiley&Sons,NY		
Designed learning plan	l		
Week:	Lectures and exercises to be held		
Week one:	General knowledge of thermodynamics		
Week two:	The body of the work; Thermodynamic state parameters and state changes		
Week three:	Polytrophic processes and poytropes special cases.		
Week four:	First law of thermodynamics		
Week five:	Enthalpy and internal energy		
Week six:	Second law of thermodynamics		
Week seven:	First assessment		
Week eight:	Enthropy, reversible and irreversible processes		
Week nine:	Thermodynamic analysis of processes and cycles		
Week ten:	Real gasses and steam; The engine cycles.		
Week eleven:	Transmission of heat by conduction		
Week twelve:	Transmission of heat by convection		
Week thirteen:	Transmission of heat by radiation-thermal radiation.		
Week fourteen:	The transmission of heat in general form		
Week fifteen:	Second assessment		

Academic policies and rules of conduct

Regular attendance, turning off mobile phones, coming to class on time, etc.